NanoSAM Lab

Chemical Analysis with Ultimate Resolution

NanoSAM Stage

High magnification Auger measurements make great demands on mechanical stability of the sample stage. Driven by Omicron´s SPM expertise, the new NanoSAM stage represents an extremely stable and low drift platform with a new non-magnetic UHV drive technology and eucentric Zalar rotation by a unique stacking sequence of Z-φ-XY motors.

Beyond this, Auger measurement times can easily exceed several minutes - in the case of elemental maps even hours. A technically mature electronic drift correction is therefore indispensable to access a suitable performance level at small structures or at very low elemental concentrations. Based on the conventional approach employing image correlation of sequential SEM images and step-wise electron beam correction, the new Dynamic Drift Correction incorporates a continuous drift vector.

This combination provides a quasi-continuous tracking of the electron beam with outstanding drift values below 10 nm per 12 hours.


UHV Gemini Column

The patented UHV Gemini Column is the electron source with the highest resolution available for UHV operation. Designed for true UHV <1x10-8 Pa, the column is fully bakeable to 180°C and operates without any measurable outgassing: a must for contamination-free research on many materials.

The design of the UHV Gemini Column is the result of a collaboration between Omicron and ZEISS NTS, employing the same electron optics as used in the ZEISS Gemini SEM product range. Both the leading edge SEM software SmartSEM and the Gemini control electronics are standard products from Zeiss NTS, incorporated also in the UHV version.

The Auger control software is integrated with the SmartSEM software. For efficient data processing an industry standard software is available. Data can also be saved in standard formats such as VAMAS or ASCII.


Charge Neutralisation and Depth Profiling

Analysis of insulating materials is often impossible with AES, or at least a challenging task. The FIG 05 sputter source enables the operator to compensate negative charges induced by the electron beam with a flood of low-energetic positive ions. This allows analysis of samples which could otherwise not be imaged under stable conditions.
The FIG 05 may also be used for depth profiling with a beam energy ranging from a few 100 eV on delicate samples to 5 keV with high current density for rapid profiling.


Optional Techniques

  • Combined XPS and SAM for in-situ analysis of the elemental composition and chemical functionality.
  • Electron BackScatter Diffraction (EBSD) for in-situ analysis of the crystal structure alongside with the elemental composition.
  • Focussed Ion Beam (FIB) for tailoring of the sample structure (UHV-Crossbeam with < 10 nm spot size).
  • SEM with Polarisation Analysis (SEMPA) for imaging of the magnetic domain structure.
  • Electron Beam Lithography (EBL) under cleanest conditions (UHV < 1*10-9 Pa) for basic research on new resists materials and smallest structures (also for Electron Beam Induced Deposition (EBID)).