We are sorry. This instrument is obsolete. Please have a look on our newest products

Reference systems

Nanofabrication & Epitaxy Cluster | © Scienta Omicron

Nanofabrication & Epitaxy Cluster

The Nanofabrication and Epitaxy Cluster is a multi-user platform of the Helmholtz Foundation for research on structures and devices for quantum computing, semiconductor technology and materials, and concepts for novel devices. Extended in 2020 by a NanoScanLab (FIB/SEM), Large Sample SPM for 4" wafers, and LEED module.

Epitaxy Laboratory  | © Scienta Omicron

Epitaxy Laboratory

Materials Innovation Platform (MIP) with research focus on fabrication of epitaxially grown III-N semiconductors for optoelectronics and spintronics using a state-of-the-art cleanroom lab.

UHV Cluster System at the D&S Research Center, Samsung Electronics Co.,Ltd. | © Scienta Omicron

Surface Science Analysis Cluster System

Cluster system offering multiple complementary surface science techniques, as XPS, UPS and AFM for detailed sample characterisation. The analysis system is integrated into a linear transfer line to ensure future expandability.

Nanolab with FIB/SEM and LS STM | © Scienta Omicron

NanoScan Lab with FIB/SEM and Large Sample SPM

Extension to the large 14 modules HNF cluster by a NanoScan Lab for SEM/FIB and an SPM module. Both modules are interfaced to the existing cluster and work on 4" samples.

MULTIPROBE System with XPS, UPS, LS STM, LEED and MBE Sources | © Scienta Omicron

MULTIPROBE System with XPS, UPS, and Large Sample SPM

Research focus on the relation between electronic properties and device performances of Dirac electrons and two-dimensional electron systems such as graphene and GaN and controlling the surface structural and electronic properties of graphene in terms of the crystallographic orientation of the Si substrate.

Tailored Multichamber MBE System from Scienta Omicron | © Scienta Omicron

Materials Innovation Platform (MIP) with MBE, PVD and Surface Analysis

Research focus on nanoscale materials, interfaces and advanced devices including, high-k gate dielectrics, gate electrodes and novel 2D materials (TMDs, e.g. MoS2). 



ZyVector: STM Control System for Lithography

2.59 MB

Scienta Omicron and Zyvex Labs announce a collaboration to develop and distribute tools for research and manufacturing that require atomic precision. The ZyVector STM Control System from Zyvex Labs turns a Scienta Omicron STM into an atomically-precise scanned probe lithography tool, and will be distributed world-wide by Scienta Omicron.

Zyvector Booklet

3.64 MB

Zyvex Labs pursues research and develops tools for creating quantum computers and other transformational systems that require atomic precision, towards its eventual goal of Atomically Precise Manufacturing. As part of this effort, ZyVector turns the world-class Scienta Omicron VT-STM into an STM lithography tool, creating the only complete commercial solution for atomic precision lithography.

Zyvex CHC Controller

2.78 MB

Scienta Omicron and Zyvex Labs announce a new leap forward in STM design; real- time position correction. The ZyVector STM control system from Zyvex Labs uses live position correction to enable atomic-precision STM lithography. Now the same live position correction technology is brought to the Matrix STM control system for microscopy and spectroscopy users, enabling fast settling times after large movements in x, y and z, and precise motion across the surface, landing and remaining at the desired location.

Services & Spare-parts

For spare parts, please check the service product finder or contact the service team.